

Thomas **Jefferson** University

Ceramic on XLPE My Choice

Javad Parvizi MD, FRCS Professor Orthopedic Surgery Rothman Institute at Thomas Jefferson Uuiversity

Disclosures

Research support:

- **NIH**
- **OREF**
- Stryker Orthopedics
- **Depuy**
- **Zimmer**
- Baxter
- **3**M
- Biomemetics
- Ceramtec
- Smith and Nephew

Board Member/Adviser

- Journal of Arthroplasty
- Philadelphia Orthopaedic Soc
- **Eastern Orthopedic Assoc.**
- United Healthcare
- **3**M
- JBJS-A
- **Bone and Joint Journal (British)**
- Muller Foundation

Consultant:

- **Zimmer**
- Smith and Nephew
- Convatech
- TissueGene
- Ceramtec
- **3**M
- PRN
- Medtronic
- Pfizer
- Intellectual Property/Royalty:/Ownership
 - Elsevier
 - Wolters Kluwer
 - Slack
 - Hip Innovation Technology
 - CD Diagnostics
 - Jaypee publishers
 - Datatrace
 - **ForMD**

Poly wear

ysis

 PE wear # 1 cause of long term failure

• PE wear \rightarrow Osteolysis

Conventional Polyethylene

Cross Linked Polyethylene

Ceramic on Ceramic Rothman Institute Orthopaedics Thomas Jefferson University

Metal on Metal

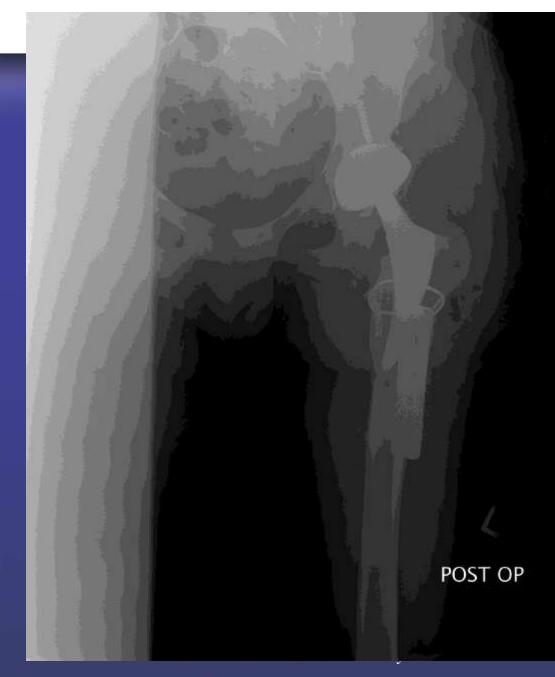
Metal on Metal

Bearng Surface

Conventional poly---not for the youngAbandoned mostly


Elderly/inactive---- Metal on poly Moderately active-metal or ceramic on XLP Hyperactive Everyone ---- COC

22 YEAR OLD



I nomas Jenerson University

Elderly/inactive---- Metal on poly Moderately active- metal or ceramic on XLP

Rothman Institute Orthopaedics Thomas Jefferson University

Everyone ---- COC

Wear Rate

200 microns/year

20 microns/year

4.2 microns/year

less than 1 micron/year

More wettable $\rightarrow \uparrow$ lubrication Small grain size \rightarrow improved surface finish

= reduced friction

Standard CoCr Head

Ceramic Head

(clinical data)*

Metal / UHMWPE Alumina / UHMWPE Zirconia / UHMWPE Alumina / Alumina

0.2mm/y 0.1mm/y 0.1mm/y 0.005mm/y

Femoral head Cup Metal / UHMPE Wear rate 2 - 165 μm/y 1 - 48 μm/y 100 - 200 μm/y

Risk factors

- Males

- <50 years - >80 kgs

\rightarrow Using ceramic femoral heads against highly crosslinked polyethylene (HXLPE) reduces wear by ~30% when compared to metal against HXLPE.

• Four groups:

- Metal vs. 1st generation HXLPE (Crossfire[®])
- Ceramic vs. 1st generation HXLPE (Crossfire[®])
- Metal vs. 2nd generation HXLPE (X3[®])
- Ceramic vs. 2nd generation HXLPE (X3[®])

**Crossfire® and X3® (Stryker Orthopaedics, Mahwah, NJ)

Power analysis:

- Crossfire[®] group: 150 patients
- **X3[®] group: 500 patients**

- Patients matched according to age, gender, BMI, activity level (UCLA score), preoperative diagnosis, laterality, year of surgery.
- Serial follow-up x-rays used to quantitate wear.
 Crossfire[®] follow-up → ~6 years post-op
 X3[®] follow-up → ~4 years post-op

→ Using ceramic femoral heads against highly cross-linked polyethylene (HXLPE) reduces wear by ~30% when compared to metal against HXLPE.

- We wanted to measure the in-vivo wear rates of metal vs. ceramic against X3
- Wear rate achieved by comparing serial xrays
- Power analysis: 250 patients/group → to show
 30% difference in wear rate
- Data collected: age, gender, BMI, preoperative diagnosis, laterality and year of surgery.

• AP pelvis radiographs of THA patients

First x-ray: postoperative (6 mos to 1yr)
 → to account for bedding in period

 Serial x-rays gathered with average 4 years follow up post THA

Parameters

 Images anonymized and de-identified

	Metal	Ceramic
Patients	177	292
BMI	28.3	27.7
Age	70.1	59.8
Females	51.4%	52.1%

Observers and statistician blinded to head material

ROMAN method (ROntgenMonogrammetric ANalysis)

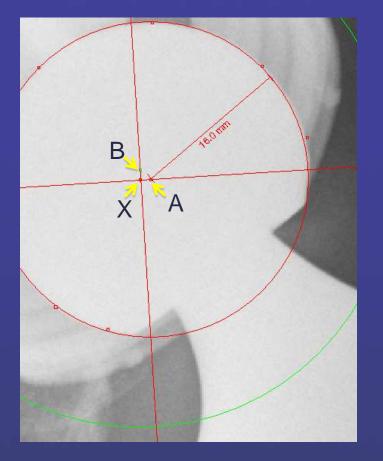
Measurement method

 Manually define acetabular cup and implant head edges

 Calibrate measurements according to known head size

Measurement method

Draw a line joining ischial tuberosities (X)


 Draw perpendicular to (X) from center of cup

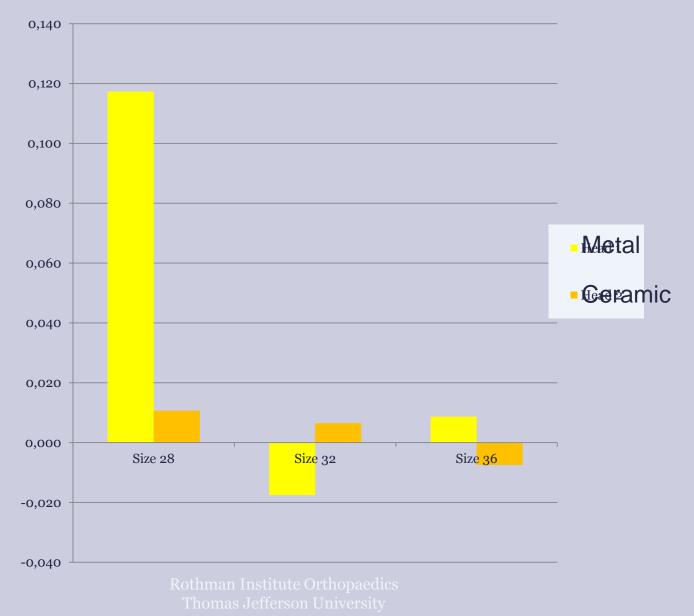
 Draw perpendicular to center of cup line from center head

Measurement method

 Take intercept of the two lines (A and B)

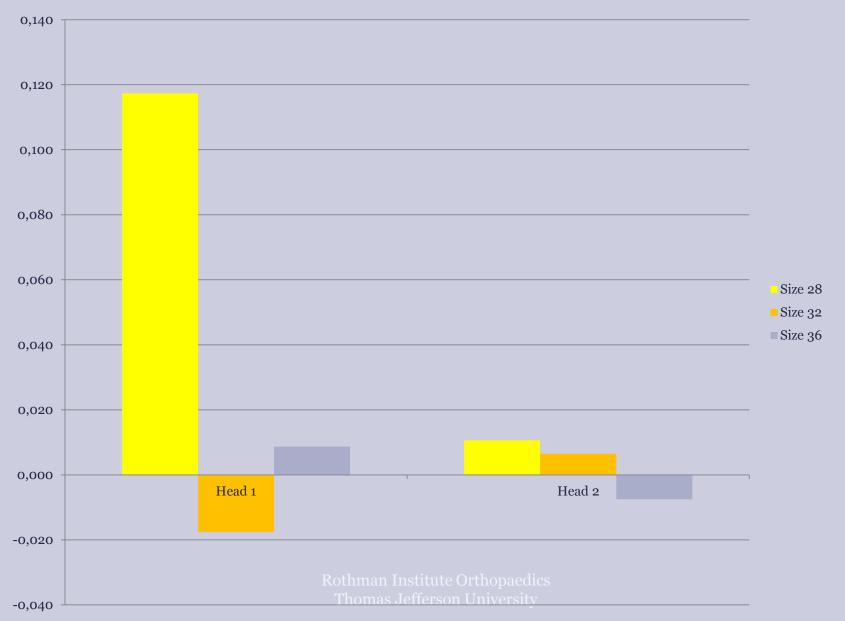
 Measure distance X-A and X-B

 Determine resultant vector and angle of displacement


XLPE Wear at 4 yearsSignificantly higher with metal head

	Metal	Ceramic
28mm head	0.117 mm/yr	0.011 mm/yr
32mm head	-0.018 mm/yr	0.006 mm/yr
36mmhead	0.009 mm/yr	-0.008 mm/yr

Results

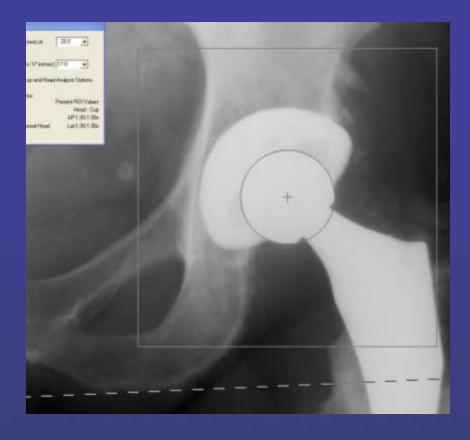


Results

Results

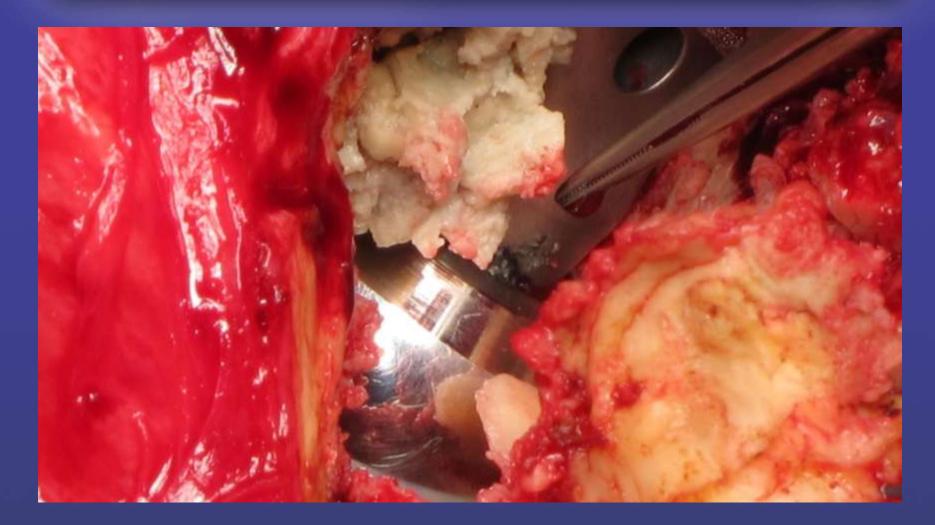
No significant difference found between wear rates of metal vs. ceramic (32,36 and 40 mm)
 Statistically indistinguishable from o wear

 Negative values may reflect measurement errors


 Intraclass correlation coefficient was low
 0.06
 Rothman Institute Orthopaedics Thomas Jefferson University

Wear Analysis

Ischial tuberosity delineated Head and shell edges manually defined Head and cup sizes manually entered Acetabular inclination and anteversion automatically detected


True wear (excluding bedding in period)

	Metal	Ceramic
Mean Linear Wear Rate	0.277±0.391 mm/yr	0.093±0.206 mm/yr
Mean Volumetric Wear Rate	208.8±245.4 mm ³ /yr	$78.8 \pm 65.9 \text{ mm}^3/\text{yr}$

Metal on Poly

Metal on Poly Retrieval Study

Taper corrosion Higher with metal head compared to ceramic

Kurtz et al 2013

Ceramic against XLPE

Great wear performance Biocompatible (no hypersensitivity) Excellent long term outcome Fracture risk– extremely small

